ORIGINAL ARTICLE

COMPARATIVE EVALUATION OF THE EFFECT OF TWO PLANT EXTRACT AND DENTURE CLEANSER ON THE STAINING AND ANTI-FUNGAL EFFICACY OF DENTURE BASE RESIN: AN IN VITRO STUDY

Prakhar Khurana¹

ABSTRACT

INTRODUCTION: Edentulism is the most common oral problem encountered in the human population and the commonest remedy to it is dentures. Natural products and essential oils are promising therapeutic tools for oral infection. The increasing awareness towards the varied uses of natural products has made them a popular alternative to synthetic materials. Therefore, a study is planned to evaluate and compare the antifungal efficacy of triphala and aloe vera when combined with denture cleansers on heat activated polymethyl methacrylate resin.

MATERIALS AND METHOD: In the present study 30 samples of polymethyl methacrylate resin of 20mm X 10mm X 2.5mm were fabricated. All the samples will be grouped into three groups of ten samples each and will be immersed in three test solutions for 8 hours daily for 30 days. The samples will be tested by spectrophotometer. Another test will be that all samples will be first inoculated with candida albicans mature biofilm, after which they will be dipped in the three solutions to observe the decrease in colony forming units per millimetre.

RESULTS: There was a statistically significant reduction in CFU/ml of both triphala and aloe vera solution. However, no statistically significant difference was found in color stability among the two groups.

CONCLUSION: Within the limitations of this study, it was found that both the denture cleansers showed a significant difference decrease in CFU/ml for antifungal efficacy on denture base resins when compared to control group. However, both the denture cleansers did not show a significant difference on the color stability of denture base resins.

KEYWORDS: Candida albicans, denture cleansers, aloe vera, triphala, staining, denture base resins

1. MDS (Prosthodontics), Clove Dental, New Delhi

Corresponding Author Dr Prakhar Khurana

MDS (Prosthodontics), Clove Dental, New Delhi Email: prakhar.khurana@clovedental.in

INTRODUCTION

Oral hygiene is an important aspect in maintaining the well-being of an individual since ages. There is a lack of awareness regarding the maintenance of oral hygiene and management in elderly individuals. Denture-related stomatitis or Candida-associated denture-induced stomatitis is common condition seen in geriatric patients, where mild inflammation and redness of the oral mucosa occurs beneath a denture1. The prevalence of candida has been observed to be around 60%-100%¹. It binds to dentures and if left to accumulate over a short period of time can cause mucosal inflammation and halitosis². Denture cleansers are a popular method used by denture wearers for cleaning. There are wide varieties of denture cleansers used to remove soft food and hard deposits of calculus and stains on denture base and teeth³. Deposits that form on the acrylic resin denture bases and on the teeth are assumed to be caused by the same mechanisms and substances that cause deposits on natural teeth, of which salivary calculus and tobacco tars are most common and most difficult to remove4. Natural products and essential oils are promising therapeutic tools for oral infection⁵. Aloe vera and triphala is the oldest medicinal plant ever known. Both has significant antimicrobial property¹. The increasing awareness towards the varied uses of natural products has made them a popular alternative to synthetic materials. Therefore, a study was planned to evaluate and compare the antifungal efficacy of triphala and aloe vera when combined with denture cleansers on heat activated polymethyl methacrylate resin.

MATERIALS AND METHOD

For the study, 30 samples of heat cure acrylic resin of 20mm X 10mm X 2.5mm dimesnions were fabricated and were divided into three groups-

GROUP 1: denture cleanser + triphala solution in tap water

GROUP 2: denture cleanser + aloe vera solution in tap water

GROUP 3: denture cleanser in tap water (control)

For the fabrication of 30 samples, pre-fabricated metal

die of 21 mm x 11 mm x 2.6 mm was used and putty index was formed. Then modelling wax (DPI) was taken, melted and was poured into the putty index that was formed. The denture base resin patterns were then fabricated according to manufacturer's technique.

INITIAL COLOR EVALUATION

The initial color evaluation (CIE L*a*b* value) for each group was done by color spectrophotometer (SI. No-1004545, Model CM 2600D).

PREPARATION OF TEST SOLUTIONS

For evaluation of color stability of polymethyl methacrylate acrylic resin and efficacy of denture cleansers to remove Candida albicans biofilm, two test solutions were prepared. Plant extract test solution were prepared in the ratio of (1:10) by dissolving one tablet of fittydent denture cleanser in 100 ml tap water (to simulate environmental conditions) of 10 ml plant extract solution.

FINAL COLOR EVALUATION

The solution was prepared and placed in 30 small containers. Into each container one die of polymethyl methacrylate was dipped overnight (8 hours duration) for a period of 30 days in separate containers. After the treatment, each specimen was removed, cleaned and dried The color change (AE) of each specimen was calculated as follows:

 $\Delta E \left[(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2 \right]^{-1}$

REVIVAL OF CULTURE

Candida albicans pure strain powder was obtained. It was placed in a 40 mL container of BD Bactec Mycosis broth and cultured in a Bactec culture machine at 35°C for 48 hours. With the pour plate lawn culture method, 2ml of the revived Candida albicans suspension in the broth was plated on the Sabouraud dextrose Agar plate. Subculture was carried out in an incubator at 37°C for 48 hours.

METHOD FOR PREPARING THE STANDARDIZED CANDIDA SUSPENSION FOR BIOFILM FORMATION

With the use of a Densitometer, the Candida density was standardised to 2 x 105 CFU/ml. Three millilitres of normal saline were placed in two polypropylene tubes. Colonies were picked from the culture plates and transferred to the tubes using loop. The densitometer was zeroed in order to standardise the density. The colony count was increased until the densitometer read

 2×10^5 CFU/ml. Sabouraud dextrose agar was put into three culture plates. When the agar was semisolid, 10 polymethyl methacrylate acrylic resin samples were inserted horizontally in each plate and left to freeze. In each culture plate, 1.5 mm of the standardised suspension was poured over the samples. All of the plates were incubated for 72 hours at 37° C.

POSITIVE CONTROL

After 72 hours, one sample was taken out, sonicated for 30 seconds, and the sonicated solution was serially diluted with pH buffer saline before being plated on a new agar plate with 2 ml of the suspension. At 37°C, this was incubated for 24 hours. The plate showed Candida albicans colonies after 24 hours, indicating that the yeast incubation process was successful.

TREATMENT OF SAMPLES

After 72 hours, all of the samples were removed from the plate and washed in PBS for 2 seconds to remove the loosely adherent Candida. It was then immersed in the test solutions for eight hours. Each specimen was gently washed in 2 mL of Phosphate Buffer Saline solution for 2 seconds in a sterile sonicator tube. Sonication at 8 W for 30 seconds was used to remove adherent bacteria from the sample. The sonicated solution was diluted in PBS and plated on a freshly prepared sabouraud dextrose agar plate with 1 ml of the suspension. The plates were incubated for 72 hours at 37°C in the incubator.

FINAL CULTURE COUNT

After 72 hours, 30 polypropylene tubes were numbered and filled with 3 mL distilled water. A loop of colony was harvested from the plate and suspended in the appropriate tubes. The densitometer was taken, and was zeroed. For the treated samples, all of the tubes were analysed for CFU/ml.

RESULTS

Table 1.1, 1.2 and Graph 1 shows that after treatment, except for Group III which showed an increase in colony count all other two groups showed a reduction in colony count. This reduction was maximum in Group I and minimum in Group III.

Table 2 shows a statistically significant intergroup difference with respect to change in mean colony forming unit in different groups. It was observed that change in the three groups were in negative direction. Among the three groups. Group 1 showed change values at the most negative value while Group III showed change values at the least negative order.

Table 1.1: Comparison of colony count in different groups after treatment

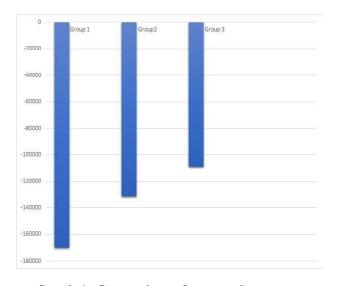

S. NO.	GROUP I	GROUP II	GROUP III		
1.	29090.91	67272.73	92727.27		
2.	25454.55	74545.45	85454.54		
3.	30909.09	61818.18	96363.64		
4.	36363.64	63636.36	94545.45 87272.73		
5.	27272.73	72727.27			
6.	25254.55	67272.73	98181.82		
7.	32727.27	63636.36	89090.91		
8.	30909.09	70909.09	85454.54		
9.	34545.45	74545.45	87272.73		
10.	27272.73	69090.91	92727.27		
Mean	29980	68545	90909		

Table 1.2: Comparison of mean colony count change from baseline in different groups after treatment

	Group I	Group II	Group III
Mean	-170020	-131455	-109091
SD	3788	4620	4616
Min	-174745	-138182	-114545
Max	-163636	-125455	-101818
Mean	-85.0	-65.7	-54.5
SD	1.9	2.3	2.3

interval among three groups by one way ANOVA, there was a significant difference in means of color at position L on Final time, p=0.025, p<0.05. The reaming means of color were not significant p>0.05.

Table 6 shows the multiple comparison of means of color at positions L, b and a at two time interval among groups by Tukey's HSD test. The mean difference of color Final L between group 2 and group 3 (5.0882) was significant, p<0.05. So the means of color Final L in group 2 (53.997) was significantly higher than group (348.909).

Graph 1: Comparison of mean colony count change in different groups after treatment

Table 2: Analysis of variance for mean change in colony count in different groups

	Sum of Squares	Df	Mean Square	F	Significance
Inter Groups	3.0×10^{11}	3	$1.0\mathrm{X}10^{11}$	390.728	< 0.001
Intra Group	9.3 X 10 ⁹	36	2.5 X10 ⁹		
Total	3.1×10^{11}				

Table 3: Inter group comparison of change in colony count

	Comparison	Absolute c	hange	% Chan	P-value	
		Mean	SE	Mean	SD	
1.	I vs II	228020	7199	114.01	3.60	< 0.001
2.	I vs III	167091	7199	83.55	3.60	< 0.001
3.	II vs III	-60929	7199	-30.46	3.60	< 0.001

Inter group comparison (Table 3) revealed a statistically significant difference for all the comparisons

Table 4 and Graph 2,3 and 4 shows distribution of mean and S.d. of color at positions L, b and a at two time interval of three groups

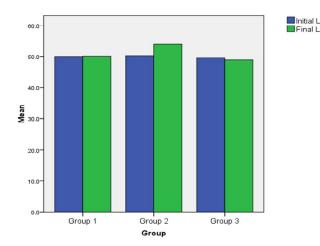
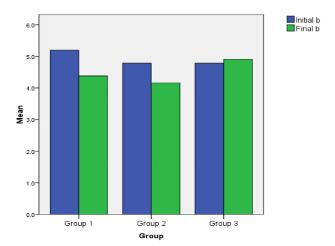

Table 5: On comparison (Inter group comparison) of means of color at positions L, b and a at two time

Table 7 showed the distribution of mean and S.d. of Color change "E of three groups. From Table 8, on comparison of mean of Color change "E among three groups by one way ANOVA, there was no significant difference in the means of Color change "E among three groups, p>0.05.

Table 9 showed the intra group comparison of means

Table 4: Change in lightnes ÄL (brightnes) in different groups

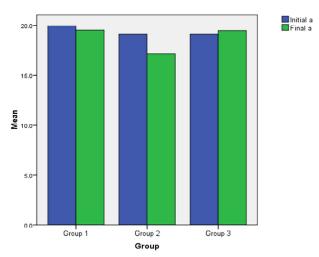
						95% Confiden					
	Group	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum		
Initial L	I	10	49.997	1.4140	.4471	48.986	51.009	47.9	52.0		
	II	10	50.249	1.6838	.5325	49.045	51.454	47.9	53.1		
	III	10	49.523	1.1049	.3494	48.733	50.314	47.9	51.1		
Initial b	I	10	5.192	1.1114	.3515	4.397	5.987	2.7	6.1		
			4.784	.8731	.2761	4.160	5.409	2.7	6.1		
	III	10	4.784	.8731	.2761	4.160	5.409	2.7	6.1		
Initial a	I	10	19.954	1.6198	.5122	18.795	21.112	1.112 17.1 2			
	II	10	19.128	1.8455	.5836	17.808	20.449	16.2	20.6		
	Ш	10	19.128	1.8455	.5836	17.808	20.449	16.2	20.6		
Final L	I	10	50.119	2.5039	.7918	48.328	51.911			1.911 47.9	
	II	10	53.997	6.5810	2.0811	49.290	58.705	47.9	67.7		
	Ш	10	48.909	.5848	.1849	48.491	49.328	47.9	49.6		
Final b	I	10	4.382	.9905	.3132	3.673	5.090	2.7	5.4		
	II	10	4.161	1.5743	.4979	3.035	5.287	1.6	6.1		
	III	10	4.910	1.2188	.3854	4.038	5.782	2.7	6.4		
Final a	I	10	19.518	2.0563	.6502	18.047	20.989	15.0	21.4		
	II	10	17.154	3.9716	1.2559	14.312	19.995	10.8	21.2		
	III	10	19.476	1.3296	.4204	18.525	20.427	17.1	20.7		



Graph 2: Distribution of means of color on position L at two time interval

of color between two time intervals on different positions of three groups paired t- test. The mean difference (.8106) of color between Initial b and Final b of group 1 was significant<0.05.

DISCUSSION


Oral microbial flora is comprised of numerous microorganisms like Streptococcus species, Staphylococcus species, Escherichia coli, Pseudomonas species and Candidal species^{6,7}. The most commonly found in denture wearers is the candida species^{2,8,9,10,11,12}. The present study was undertaken to see the effect in

Graph 3: Distribution of means of color on position b at two time interval

combination of denture cleanser along with plant extract solution for polymethyl methacrylate resin.

Several studies ^{2,13,14,15,16,17} have evaluated the effect of denture cleansers on initial Candida (24-48 hours of biofilm) on denture base materials, however not much attention has been paid on the effect of these cleaning agents on Candida associated mature biofilm. The fungus grows in number, invades tissues, and causes illness over time, most likely as a result of the creation of more harmful cells aided by the phenotypic switching mechanism. Such qualities enable Candida albicans fungal cells to adapt quickly to changes in the host,

Graph 4: Distribution of means of color on position a at two time interval

such as evading immune system elements, acquiring antifungal resistance, and maximising colonisation and invasion of the host epithelial surface. Hence, in the present study, a time period of 72 hours¹⁸ has been given for mature biofilm formation so that the effectiveness of the denture cleansers can be evaluated.

Table 5: Comparison (Inter group comparison) of means of color at positions L, b and a at two time interval among three groups by one way ANOVA

	ANOVA											
		Sum of Squares	df	Mean Square	F	P value						
Initial L	Inter Group	2.718	2	1.359	.673	.518						
	Intra Group	54.499	27	2.018								
	Total	57.218	29									
Initial b	Inter Group	1.109	2	.554	.603	.555						
	Intra Group	24.837	27	.920								
	Total	25.946	29									
Initial a	Inter Group	4.537	2	2.269	.721	.495						
	Intra Group	84.921	27	3.145								
	Total	89.459	29									
Final L	Inter Group	141.311	2	70.655	4.246	.025*						
	Intra Group	449.287	27	16.640								
	Total	590.598	29									
Final b	Inter Group	2.963	2	1.482	.899	.419						
	Intra Group	44.506	27	1.648								
	Total	47.470	29									
Final a	Inter Group	36.621	2	18.310	2.523	.099						
	Intra Group	195.924	27	7.256								
	Total	232.545	29									

Table 6: Multiple Comparison of means of color at positions L, b and a at two time interval among groups by Tukey's HSD test

	(I) Group vs				95% C	onfidence Interval
Dependent Variable		Mean Difference (I-J)	Std. Error	P value	Min	Max
Initial L	1 vs 2	2519	.6354	.917 ^{NS}	-1.827	1.323
	1 vs 3	.4742	.6354	.738 ^{NS}	-1.101	2.050
	2 vs 3	.7261	.6354	.497 ^{NS}	849	2.301
Initial b	1 vs 2	.4078	.4289	.614 ^{NS}	656	1.471
	1 vs 3	.4078	.4289	.614 ^{NS}	656	1.471
	2 vs 3	.0000	.4289	$1.000\mathrm{NS}$	-1.063	1.063
Initial a	1 vs 2	.8250	.7931	.559 ^{NS}	-1.141	2.791
	1 vs 3	.8250	.7931	.559 ^{NS}	-1.141	2.791
	2 vs 3	.0000	.7931	$1.000\mathrm{NS}$	-1.966	1.966
Final L	1 vs 2	-3.8780	1.8243	.103 NS	-8.401	.645
	1 vs 3	1.2102	1.8243	.786 ^{NS}	-3.313	5.733
	2 vs 3	5.0882	1.8243	.025*	.565	9.611
Final b	1 vs 2	.2204	.5742	.922 ^{NS}	-1.203	1.644
	1 vs 3	5286	.5742	.632 NS	-1.952	.895
	2 vs 3	7490	.5742	.405 NS	-2.173	.675
Final a	1 vs 2	2.3645	1.2047	.141 ^{NS}	622	5.351
	1 vs 3	.0421	1.2047	.999 ^{NS}	-2.945	3.029
	2 vs 3	-2.3224	1.2047	.150 NS	-5.309	.665

Table 7: Distribution of mean and S.d. of Color change "E of three groups

Group	Group N Mean Std. Deviation S			95% Confiden	ce Interval for Mean			
Group			Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
1	10	2.0394	1.60703	.50819	.8898	3.1890	.00	4.45
2	10	5.5759	6.44404	2.03778	.9661	10.1857	.00	15.23
3	10	2.6263	1.97781	.62544	1.2115	4.0412	.53	4.70

Table 8: Comparison of mean of Color change "E among three groups by one way ANOVA

ANOVA										
ΔΕ										
	Sum of Squares	df	Mean Square	F	P value					
Between Groups	71.838	2	35.919	2.244	.125 NS					
Within Groups	432.179	27	16.007							
Total	504.017	29								

Shetty et al¹⁹ and Shireen et al²⁰ evaluated the effect of aloe vera on anti-fungal efficacy and found to be effective. The results were consistent with the Iseri et al¹⁰ and however he compared the efficacy against mouth rinses. The effect was similar with Ferreira et al²¹ when compared with multispecies biofilm.

The result of the present study are in consistent with several authors^{22,23,24} in which the authors did not detect any color changes in the use of denture cleansers. Whereas, the results are not consistent with several authors^{13,25,26,27} in which the authors detected a significant color change. The difference in results might be due to the fact that the samples were immersed with denture cleansers for ninety days, whereas in this study the time period selected was thirty days.

Only chemical cleansing can be considered in the present study, Chemical cleansing could be a good choice

for the elderly too, who require adjunctive measures to clean their dentures. Several studies^{28,29} showed combination methods was more effective than chemical cleansing alone.

Sodium perborate is a peroxide type denture cleanser. When dissolved in water, it forms a solution of hydrogen peroxide. This type of cleanser combines alkaline detergents to reduce surface tension and chemicals that release oxygen from the solution. The oxygen bubbles exert a mechanical cleansing effect³⁰. The denture cleansers that have been selected in the present study is evaluated for its effectiveness against Candida albicans mature biofilm by dipping the polymethyl methacrylate acrylic resin samples with the Candidal biofilm in it for 8 hours^{8,31}. The literature has stated various time intervals for evaluating the same³².

In this study out of the two plant extract solutions triphala solution showed increase in anti-fungal efficacy than aloe vera solution when compared to the control group whereas there was no significant difference in the color stability however out of the two solutions aloe vera showed better stability than triphala solution when compared to the control group.

The present study provides some clinical implications which are of benefit to the denture wearers as well as for the clinician. For use by patients with severe denture stomatitis, a denture cleanser with highest

Table 9: Intra group comparison of means of color between two time intervals on different positions of three groups paired t- test

Г		Paired D	Differences						
					95% Confidenc	e Interval of the Difference			
C	roup	Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	P value
1	Initial L - Final L	1220	1.9228	.6081	-1.4975	1.2535	201	9	.845 ^{NS}
	Initial b - Final b	.8106	1.0735	.3395	.0427	1.5785	2.388	9	.041*
	Initial a - Final a	.4355	1.1819	.3738	4100	1.2810	1.165	9	.274 ^{NS}
2	Initial L - Final L	-3.7481	5.9601	1.8847	-8.0117	.5155	-1.989	9	.078 ^{NS}
	Initial b - Final b	.6232	1.5862	.5016	5115	1.7579	1.242	9	.245 ^{NS}
L	Initial a - Final a	1.9750	4.2021	1.3288	-1.0310	4.9810	1.486	9	.171 ^{NS}
3	Initial L - Final L	.6140	1.4893	.4709	4514	1.6794	1.304	9	.225 NS
1	Initial b - Final b	1258	1.3634	.4311	-1.1011	.8495	292	9	.777 ^{NS}
L	Initial a - Final a	3474	2.6322	.8324	-2.2304	1.5356	417	9	.686 ^{NS}

ability of biofilm removal should be recommended like combination of denture cleanser and triphala solution and if color stability is more important for the patient than a combination of denture cleanser and aloe vera solution is recommended.

The limitations of this study was that mixed microbial biofilms were not assessed. In the oral cavity, microoraganisms exist in polymicrobial communities and different species interact in a complex manner to modulate biofilm nature. Also, this study did not simulate the oral environment conditions in which the Candida biofilms develop on denture. Time of dipping the samples into denture cleansers was another factor which would have been varied to longer

durations to see the long term effect. Also, other cleansing aids like brushing or ultrasonic cleansing were not used to assess the efficacy of denture cleansers.

Hence, further studies should look at the in vivo as well as in vitro response of mixed communities with longer time intervals and using other denture cleaning aids also.

CONCLUSION

The following conclusions can be drawn:

- 1. Both the plant extract solutions showed significant decrease in CFU/ml for Candida albicans biofilm on denture base resins when compared to control group.
- 2. Among the two plant extract denture cleansers used, the most effective in reduction of CFU/ml for Candida albicans was triphala solution followed by aloe vera solution.
- 3. The plant extract were not significantly effective in removing stains from heat cure denture acrylic resins on short term basis.

REFERENCE

- Isadkar YS, Palaskar SJ, Narang B, Bartake AR. Aloe vera as denture cleanser. J Dent Allied Sci 2018;7:23-6
- 2. **Harrison Z, Johnson A, Douglas CWI.** An in vitro study into the effect of a limited range of denture cleaners on surface roughness and removal of Candida albicans from conventional heat-cured acrylic resin denture base material. J Oral Rehabil 2004;31:460-7.
- 3. **Salem SAL, Al-Khafaji AMA.** The effect of prepared denture cleansers on some physical properties of stained acrylic resin denture base material cured by two different techniques. J Baghdad Coll Dent 2006;18(2):1-8.
- Nicholsan RJ, Stark MM, Scott HE. Calculus and stain removal from acrylic resin dentures. J Prosthet Dent 1968 Oct;20(4):326-9.

- Anjum R, Dhaded SV, Joshi S, Sajjan CS, Konin P, Reddy Y. Effect of plant extract denture cleansing on heatcured acrylic denture base resin: An in vitro study. J Indian Prosthodont. Soc 2017;17:401-5.
- Banu F, Jeyapalan K, V AK, Modi K. Comparison of Colour Stability Between Various Denture Base Resins on Staining and Denture Cleansing Using Commercially Available Denture Cleansers. Cureus. 2020Jan 19;12(1):1-2.
- Srinivasan M, Gulabani M. A microbiological evaluation of the use of denture cleansers in combination with an oral rise in complete denture patients. LJDR 2010;21(3):353-356.
- 8. Paranhos, Helena & Orsi, Iara & Zaniquelli, Osvaldo & Zuccolotto, Maria & Magalhães, Fabrício. Effect of chemical denture cleansers on flexural resistance and color changes of microwave-polymerized acrylic resins. Braz. J. Oral Sci 2008;7(26):1580-4.
- Ferreira MA, Pereira-Cenci T, Rodrigues de Vasconcelos LM, Rodrigues-Garcia RC, Del Bel Cury AA. Efficacy of denture cleansers on denture liners contaminated with Candida species. Clin Oral Investig. 2009 Jun;13(2):237-42.
- 10. **I**°eri U, Uludamar A, Ozkan YK. Effectiveness of different cleaning agents on the adherence of Candida albicans to acrylic denture base resin. Gerodontology. 2011 Dec;28(4):271-6.
- 11. **Oliveira VMB, Lucena SC, Garcia RCMR, Cury AADB.** Effect of a denture cleanser on the concentration of volatile sulphur compounds and denture biofilm in institutionalized elderly. Gerodontology 2011;28:134-9
- Lucena-Ferreira SC, Ricomini-Filho AP, Silva WJ, Cury JA, Cury AA. Influence of daily immersion in denture cleanser on multispecies biofilm. Clin Oral Investig. 2014 Dec;18(9):2179-85
- Peracini A, Davi LR, de Queiroz Ribeiro N, de Souza RF, Lovato da Silva CH, de Freitas Oliveira Paranhos H. Effect of denture cleansers on physical properties of heat-polymerized acrylic resin. J Prosthodont Res. 2010 Apr;54(2):78-83.
- 14. **Nalbant AD, Kalkanci A, Filiz B, Kustimur S.** Effectiveness of different cleaning agents against the colonization of Candida spp and the in vitro detection of the adherence of these yeast cells to denture acrylic surfaces. Yonsei Med J. 2008 Aug 30;49(4):647-54.
- Salman M. Saleem S. Effect of different denture cleansers solution on some mechanical and physical properties of nylon and acrylic denture base J Bagh Coll Dentistry 2011;23:19-24.
- Lucena-Ferreira SC, Ricomini-Filho AP, Silva WJ, Cury JA, Cury AA. Influence of daily immersion in denture cleanser on multispecies biofilm. Clin Oral Investig. 2014 Dec;18(9):2179-85.
- 17. **Dhamande MM, Pakhan AJ, Thombare RU, Ghodpage SL.** Evaluation of efficacy of commercial denture cleansing agents to reduce the fungal biofilm activity from heat polymerized denture acrylic resin: An in vitro study.

- Contemp Clin Dent. 2012 Apr;3(2):168-72.
- 18. Faot F, Cavalcanti YW, Mendonça e Bertolini Md, Pinto Lde R, da Silva WJ, Cury AA. Efficacy of citric acid denture cleanser on the Candida albicans biofilm formed on poly(methyl methacrylate): effects on residual biofilm and recolonization process. BMC Oral Health. 2014 Jun 23;14:77.
- Shetty PJ, Hegde V, Gomes L. Anticandidal efficacy of denture cleansing tablet, Triphala, Aloe vera, and Cashew leaf on complete dentures of institutionalized elderly. J Ayurveda Integr Med. 2014 Jan;5(1):11-4.
- Shireen F, Manipal S, Prabhu D. Anti-fungal activity of Aloe vera: In vitro stud. SRM Journal of Research in Dental Sciences. 2015;6:92.
- Lucena-Ferreira SC, Ricomini-Filho AP, Silva WJ, Cury JA, Cury AA. Influence of daily immersion in denture cleanser on multispecies biofilm. Clin Oral Investig. 2014 Dec;18(9):2179-85.
- 22. Sato S, Cavalcante MR, Orsi IA, Paranhos Hde F, Zaniquelli O. Assessment of flexural strength and color alteration of heat-polymerized acrylic resins after simulated use of denture cleansers. Braz Dent J. 2005;16(2):124-8.
- Durkan R, Ayaz EA, Bagis B, Gurbuz A, Ozturk N, Korkmaz FM. Comparative effects of denture cleansers on physical properties of polyamide and polymethyl methacrylate base polymers. Dent Mater J. 2013;32(3):367-75.
- Banu F, Jeyapalan K, V AK, Modi K. Comparison of Colour Stability Between Various Denture Base Resins on Staining and Denture Cleansing Using Commercially Available Denture Cleansers. Cureus. 2020Jan 19;12(1):1-2.
- 25. Moon A, Powers JM, Kiat-Amnuay S. Color stability of

- denture teeth and acrylic base resin subjected daily to various consumer cleansers. J Esthet Restor Dent. 2014 Jul-Aug;26(4):247-55.
- 26. **Porwal A, Khandelwal M, Punia V, Sharma V.** Effect of denture cleansers on color stability, surface roughness, and hardness of different denture base resins. J. Indian Prosthodont. Soc. 2017 Sep;17:61-7.
- 27. **Sethi S, Singhal R, Agarwal SK, Hasan S.** Comparative evaluation of stain removal and flexural strength of denture base acrylic resin by using two different denture cleansers: an in vitro study. Int. J. Sci. Res. 2017;6(6):4-6.
- 28. Cruz PC, Andrade IM, Peracini A, Souza-Gugelmin MC, Silva-Lovato CH, de Souza RF, Paranhos Hde F. The effectiveness of chemical denture cleansers and ultrasonic device in biofilm removal from complete dentures. J Appl Oral Sci.
- 29. **Baba Y, Sato Y, Owada G, Minakuchi S.** Effectiveness of a combination denture-cleaning method versus a mechanical method: comparison of denture cleanliness, patient satisfaction, and oral health-related quality of life. J Prosthodont Res. 2018 Jul;62(3):353-358.
- Mathai JR. Comparison of efficacy of sodium hypochlorite with sodium perborate in removal of stains from heat-cured clear acrylic resin. J. Indian Prosthodont. Soc 2009 Jan;9(1):6-12.
- 31. Kumar M N, Thippeswamy HM, Raghavendra Swamy K N, Gujjari AK. Efficacy of commercial and household denture cleansers against Candida albicans adherent to acrylic denture base resin: An in vitro study. Indian J Dent Res 2012;23:39-42.
- Al-Huraishi H. Moran J. Jagger R and MacDonald E. Evaluation of stain removal and inhibition properties of eight denture cleansers: an in vitro study. Gerodontology 2013, 30:10-17.